3.492 \(\int \frac{x^3 (c+d x+e x^2+f x^3)}{(a+b x^4)^3} \, dx\)

Optimal. Leaf size=340 \[ -\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}+\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}-\frac{3 \left (\sqrt{a} f+\sqrt{b} d\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}+\frac{3 \left (\sqrt{a} f+\sqrt{b} d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}+\frac{e \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{3/2} b^{3/2}}-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )} \]

[Out]

-(c + d*x + e*x^2 + f*x^3)/(8*b*(a + b*x^4)^2) + (x*(d + 2*e*x + 3*f*x^2))/(32*a*b*(a + b*x^4)) + (e*ArcTan[(S
qrt[b]*x^2)/Sqrt[a]])/(16*a^(3/2)*b^(3/2)) - (3*(Sqrt[b]*d + Sqrt[a]*f)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)
])/(64*Sqrt[2]*a^(7/4)*b^(7/4)) + (3*(Sqrt[b]*d + Sqrt[a]*f)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(64*Sqrt
[2]*a^(7/4)*b^(7/4)) - (3*(Sqrt[b]*d - Sqrt[a]*f)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(128
*Sqrt[2]*a^(7/4)*b^(7/4)) + (3*(Sqrt[b]*d - Sqrt[a]*f)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])
/(128*Sqrt[2]*a^(7/4)*b^(7/4))

________________________________________________________________________________________

Rubi [A]  time = 0.328179, antiderivative size = 340, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 11, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.393, Rules used = {1823, 1855, 1876, 275, 205, 1168, 1162, 617, 204, 1165, 628} \[ -\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}+\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}-\frac{3 \left (\sqrt{a} f+\sqrt{b} d\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}+\frac{3 \left (\sqrt{a} f+\sqrt{b} d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}+\frac{e \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{3/2} b^{3/2}}-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^3,x]

[Out]

-(c + d*x + e*x^2 + f*x^3)/(8*b*(a + b*x^4)^2) + (x*(d + 2*e*x + 3*f*x^2))/(32*a*b*(a + b*x^4)) + (e*ArcTan[(S
qrt[b]*x^2)/Sqrt[a]])/(16*a^(3/2)*b^(3/2)) - (3*(Sqrt[b]*d + Sqrt[a]*f)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)
])/(64*Sqrt[2]*a^(7/4)*b^(7/4)) + (3*(Sqrt[b]*d + Sqrt[a]*f)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(64*Sqrt
[2]*a^(7/4)*b^(7/4)) - (3*(Sqrt[b]*d - Sqrt[a]*f)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(128
*Sqrt[2]*a^(7/4)*b^(7/4)) + (3*(Sqrt[b]*d - Sqrt[a]*f)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])
/(128*Sqrt[2]*a^(7/4)*b^(7/4))

Rule 1823

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(Pq*(a + b*x^n)^(p + 1))/(b*n*(p + 1)),
x] - Dist[1/(b*n*(p + 1)), Int[D[Pq, x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, m, n}, x] && PolyQ[Pq, x]
&& EqQ[m - n + 1, 0] && LtQ[p, -1]

Rule 1855

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(x*Pq*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Di
st[1/(a*n*(p + 1)), Int[ExpandToSum[n*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b},
 x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]

Rule 1876

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(x^ii*(Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2)))/(a + b*x^n), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^3 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^3} \, dx &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{\int \frac{d+2 e x+3 f x^2}{\left (a+b x^4\right )^2} \, dx}{8 b}\\ &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )}-\frac{\int \frac{-3 d-4 e x-3 f x^2}{a+b x^4} \, dx}{32 a b}\\ &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )}-\frac{\int \left (-\frac{4 e x}{a+b x^4}+\frac{-3 d-3 f x^2}{a+b x^4}\right ) \, dx}{32 a b}\\ &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )}-\frac{\int \frac{-3 d-3 f x^2}{a+b x^4} \, dx}{32 a b}+\frac{e \int \frac{x}{a+b x^4} \, dx}{8 a b}\\ &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )}+\frac{e \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,x^2\right )}{16 a b}+\frac{\left (3 \left (\frac{\sqrt{b} d}{\sqrt{a}}-f\right )\right ) \int \frac{\sqrt{a} \sqrt{b}-b x^2}{a+b x^4} \, dx}{64 a b^2}+\frac{\left (3 \left (\frac{\sqrt{b} d}{\sqrt{a}}+f\right )\right ) \int \frac{\sqrt{a} \sqrt{b}+b x^2}{a+b x^4} \, dx}{64 a b^2}\\ &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )}+\frac{e \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{3/2} b^{3/2}}+\frac{\left (3 \left (\frac{\sqrt{b} d}{\sqrt{a}}+f\right )\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{128 a b^2}+\frac{\left (3 \left (\frac{\sqrt{b} d}{\sqrt{a}}+f\right )\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{128 a b^2}-\frac{\left (3 \left (\sqrt{b} d-\sqrt{a} f\right )\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{128 \sqrt{2} a^{7/4} b^{7/4}}-\frac{\left (3 \left (\sqrt{b} d-\sqrt{a} f\right )\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{128 \sqrt{2} a^{7/4} b^{7/4}}\\ &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )}+\frac{e \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{3/2} b^{3/2}}-\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}+\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}+\frac{\left (3 \left (\sqrt{b} d+\sqrt{a} f\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}-\frac{\left (3 \left (\sqrt{b} d+\sqrt{a} f\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}\\ &=-\frac{c+d x+e x^2+f x^3}{8 b \left (a+b x^4\right )^2}+\frac{x \left (d+2 e x+3 f x^2\right )}{32 a b \left (a+b x^4\right )}+\frac{e \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{16 a^{3/2} b^{3/2}}-\frac{3 \left (\sqrt{b} d+\sqrt{a} f\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}+\frac{3 \left (\sqrt{b} d+\sqrt{a} f\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{64 \sqrt{2} a^{7/4} b^{7/4}}-\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}+\frac{3 \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{128 \sqrt{2} a^{7/4} b^{7/4}}\\ \end{align*}

Mathematica [A]  time = 0.349547, size = 329, normalized size = 0.97 \[ \frac{-\frac{2 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (8 \sqrt [4]{a} \sqrt [4]{b} e+3 \sqrt{2} \sqrt{a} f+3 \sqrt{2} \sqrt{b} d\right )}{a^{7/4}}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) \left (-8 \sqrt [4]{a} \sqrt [4]{b} e+3 \sqrt{2} \sqrt{a} f+3 \sqrt{2} \sqrt{b} d\right )}{a^{7/4}}+\frac{3 \sqrt{2} \left (\sqrt{a} f-\sqrt{b} d\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{a^{7/4}}+\frac{3 \sqrt{2} \left (\sqrt{b} d-\sqrt{a} f\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{a^{7/4}}-\frac{32 b^{3/4} (c+x (d+x (e+f x)))}{\left (a+b x^4\right )^2}+\frac{8 b^{3/4} x (d+x (2 e+3 f x))}{a \left (a+b x^4\right )}}{256 b^{7/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^3,x]

[Out]

((8*b^(3/4)*x*(d + x*(2*e + 3*f*x)))/(a*(a + b*x^4)) - (32*b^(3/4)*(c + x*(d + x*(e + f*x))))/(a + b*x^4)^2 -
(2*(3*Sqrt[2]*Sqrt[b]*d + 8*a^(1/4)*b^(1/4)*e + 3*Sqrt[2]*Sqrt[a]*f)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/
a^(7/4) + (2*(3*Sqrt[2]*Sqrt[b]*d - 8*a^(1/4)*b^(1/4)*e + 3*Sqrt[2]*Sqrt[a]*f)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/
a^(1/4)])/a^(7/4) + (3*Sqrt[2]*(-(Sqrt[b]*d) + Sqrt[a]*f)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^
2])/a^(7/4) + (3*Sqrt[2]*(Sqrt[b]*d - Sqrt[a]*f)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/a^(7/
4))/(256*b^(7/4))

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 373, normalized size = 1.1 \begin{align*}{\frac{1}{ \left ( b{x}^{4}+a \right ) ^{2}} \left ({\frac{3\,f{x}^{7}}{32\,a}}+{\frac{e{x}^{6}}{16\,a}}+{\frac{d{x}^{5}}{32\,a}}-{\frac{f{x}^{3}}{32\,b}}-{\frac{e{x}^{2}}{16\,b}}-{\frac{3\,dx}{32\,b}}-{\frac{c}{8\,b}} \right ) }+{\frac{3\,d\sqrt{2}}{256\,b{a}^{2}}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{3\,d\sqrt{2}}{128\,b{a}^{2}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }+{\frac{3\,d\sqrt{2}}{128\,b{a}^{2}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) }+{\frac{e}{16\,ab}\arctan \left ({x}^{2}\sqrt{{\frac{b}{a}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{3\,f\sqrt{2}}{256\,{b}^{2}a}\ln \left ({ \left ({x}^{2}-\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{3\,f\sqrt{2}}{128\,{b}^{2}a}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{3\,f\sqrt{2}}{128\,{b}^{2}a}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^3,x)

[Out]

(3/32*f/a*x^7+1/16/a*e*x^6+1/32*d/a*x^5-1/32*f*x^3/b-1/16*e*x^2/b-3/32*d*x/b-1/8*c/b)/(b*x^4+a)^2+3/256/b/a^2*
d*(1/b*a)^(1/4)*2^(1/2)*ln((x^2+(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2))/(x^2-(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1
/2)))+3/128/b/a^2*d*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x+1)+3/128/b/a^2*d*(1/b*a)^(1/4)*2^(1/2
)*arctan(2^(1/2)/(1/b*a)^(1/4)*x-1)+1/16/b/a*e/(a*b)^(1/2)*arctan(x^2*(b/a)^(1/2))+3/256/b^2/a*f/(1/b*a)^(1/4)
*2^(1/2)*ln((x^2-(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2))/(x^2+(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2)))+3/128/b^2
/a*f/(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x+1)+3/128/b^2/a*f/(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2
)/(1/b*a)^(1/4)*x-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.09603, size = 456, normalized size = 1.34 \begin{align*} \frac{3 \, b f x^{7} + 2 \, b x^{6} e + b d x^{5} - a f x^{3} - 2 \, a x^{2} e - 3 \, a d x - 4 \, a c}{32 \,{\left (b x^{4} + a\right )}^{2} a b} + \frac{\sqrt{2}{\left (4 \, \sqrt{2} \sqrt{a b} b^{2} e + 3 \, \left (a b^{3}\right )^{\frac{1}{4}} b^{2} d + 3 \, \left (a b^{3}\right )^{\frac{3}{4}} f\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{128 \, a^{2} b^{4}} + \frac{\sqrt{2}{\left (4 \, \sqrt{2} \sqrt{a b} b^{2} e + 3 \, \left (a b^{3}\right )^{\frac{1}{4}} b^{2} d + 3 \, \left (a b^{3}\right )^{\frac{3}{4}} f\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{128 \, a^{2} b^{4}} + \frac{3 \, \sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} b^{2} d - \left (a b^{3}\right )^{\frac{3}{4}} f\right )} \log \left (x^{2} + \sqrt{2} x \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{256 \, a^{2} b^{4}} - \frac{3 \, \sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} b^{2} d - \left (a b^{3}\right )^{\frac{3}{4}} f\right )} \log \left (x^{2} - \sqrt{2} x \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{256 \, a^{2} b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^3,x, algorithm="giac")

[Out]

1/32*(3*b*f*x^7 + 2*b*x^6*e + b*d*x^5 - a*f*x^3 - 2*a*x^2*e - 3*a*d*x - 4*a*c)/((b*x^4 + a)^2*a*b) + 1/128*sqr
t(2)*(4*sqrt(2)*sqrt(a*b)*b^2*e + 3*(a*b^3)^(1/4)*b^2*d + 3*(a*b^3)^(3/4)*f)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)
*(a/b)^(1/4))/(a/b)^(1/4))/(a^2*b^4) + 1/128*sqrt(2)*(4*sqrt(2)*sqrt(a*b)*b^2*e + 3*(a*b^3)^(1/4)*b^2*d + 3*(a
*b^3)^(3/4)*f)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a^2*b^4) + 3/256*sqrt(2)*((a*b^3)^
(1/4)*b^2*d - (a*b^3)^(3/4)*f)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a^2*b^4) - 3/256*sqrt(2)*((a*b^3)
^(1/4)*b^2*d - (a*b^3)^(3/4)*f)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a^2*b^4)